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A combinatorial approach to branched polymers’ statistics
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At least ideally, a certain class of polymers presents itself as a collection (set) of connected
components. Each of these components is a cycle of trees, that is branched polymers
eventually rooted on a cycle. We derive (and study) an equilibrium statistical model that
accounts for the main connectivity features of such structures, whose origin is to be found in
combinatorial probability. Phase transition (gel–sol transition) is shown to occur when some
internal control parameter crosses one (critical parameter). Various structural asymptotic
results are shown to be available using singularity analysis.

1. Introduction

Branched polymers are giant macromolecules which are the repetition of a very
large number of basic strings called monomers (typically several thousands). Their
topology is either linear (bifunctional polymers which can simply react at their two
ends) or strongly ramified (as a result of multifunctional monomers some end of which
can be attached to several host monomers) [4,8]. Cycles (or loops) may be present,
as a result of self-connection. Therefore, at least ideally, branched polymers present
themselves as a collection (set) of connected components. Each of these connected
components is a cycle of trees, that is branched polymers again (i.e., rooted labelled
trees), eventually rooted on some vertex of a cycle.

The enumeration of such combinatorial structures is part of standard theory, using
the notion of exponential generating function (EGF) which is recalled in section 2.1.
These tools are adapted to our modeling purpose of polymers in section 2.2.

However, the point of view which is developed here is that all configurations are
not allowed in the sense that there are combinatorial constraints to the modeling of
such structures, depending on the particular “chemistry” of interest. This leads to the
notion of restricted EGF for subconfigurations developed in section 2.3.

It is also reasonable to assume that all these configurations are not equally likely
to occur during polymerization. For example, strongly ramified monomers, long cycles
or multiple connected components are expected to be rare.

To this end, a randomizing procedure of these constraints is proposed, the average
behavior of which is only taken into account. It also avoids entering into endless
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“connectivity” details and considerably simplifies the problem. This leads to the notion
of average generating functions (AEGF) discussed in section 2.4, which seems to be
new.

We therefore are left with the study of an equilibrium statistical model that ac-
counts for the main connectivity features of such structures, whose origin is to be
found in combinatorial probability. This model is a three parameters construction that
are (0, 1]-valued probabilities (p1, p2, p3). Their physical signification is as follows:

– p1 reflects the multifunctionality of the monomers in the sense that pm1 is the
probability that m monomers append to some other monomer’s end, in the “soup”,
thereby forming a degree-m node in some tree.

– p2 accounts for the cycle-length in the sense that pm2 is the probability that a
cycle constituted with m monomers occurs.

– p3 is a fragmentation parameter which measures the ability for a polymer to
present several connected components. More precisely, pm3 is the probability that a
polymer is constituted of a collection of m connected subpolymers.

It should be noted that the probabilities of these events have been designed to
tend to zero exponentially fast. More work is probably needed here in order to relate
the analytic expressions of these probabilities to geometrical considerations such as
self-obstructions.

Phase transition (gel–sol transition) is shown to occur when the internal control
parameter p2/p1 crosses the unity from below (critical parameter equals one). Various
structural asymptotic results are shown to be available using singularity analysis.

It should be underlined here that this “random-connection” model is very far
removed from a “realistic” model of branched polymers. Indeed, “real” branched
polymers are embedded in some physical subspace of R3 whereas abstract functional
graphs’ models proposed below are not embedded in any space, i.e., are “free”. How-
ever, the randomizing procedure of functional graphs’ models presented here, accounts
for a rudimentary statistical form of “geometrical interactions” between monomers.

Another drawback of the model presented here is that it only allows a single
cycle per connected component, which certainly is over-simplistic in practise. This
restriction could be removed at the expense of more work on combinatorics.

As a result, this model can certainly be improved in various directions, our
primary motivation in its development being its “solvability” and the fact that in this
process, one may get insights into what may be happening in more realistic situations.

2. Counting the configurations

2.1. Exponential generating functions

Exponential generating functions are a very useful tool since they can account
for quite deep combinatorial results in a straightforward way, simply by considering
the composition of EGF’s [3,9]. Let us first introduce these mathematical objects on
which we shall focus all along this article.
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Definition 1. We shall say that a function Z(θ) of the real variable θ is an exponential
generating function (EGF), if

(i) Z(0) = 1,
(ii) it admits a convergent Taylor development, in some vicinity of the origin, that

is: there is a sequence (cm)m>1, and a non empty domainD+ = {θ ∈ R+ :Z(θ) <∞},
including zero, such that

Z(θ) = 1 +
∑
m>1

cm
m!

θm

is convergent for θ ∈ D+,
(iii) the sequence (cm)m>1 has state-space Z+, the set of non-negative integers.

Definition 2. We let θ0 denote the dominant (real positive) singularity of such EGF,
which means that Z(θ) cannot be continued as an analytic function beyond θ0.

This property is characteristic of EGF and more generally of Taylor power-series
with non-negative Taylor coefficients.

The set of coefficients (cm)m>1 is to be interpreted in the sequel as the configu-
ration number with m labelled monomers; the EGF Z(θ) encodes these informations.

We shall also use the notation Z(θ)
def
= Z(θ)− 1, in the sequel.

Example 3. We list below a few examples of EGF that are remarkable and which
shall be discussed in more detail in the sequel.

(1) cm = 1, m > 1, and Z(θ) = eθ , θ0 =∞ (set of isolated monomers);
(2) cm = (m− 1)!, m > 1, and Z(θ) = 1 − log(1− θ), θ0 = 1 (isolated cyclic

polymer);
(3) cm = m!, m > 1, and Z(θ) = 1/(1 − θ), θ0 = 1 (set of cyclic polymers);
(4) cm = mm−1, m > 1, for which θ0 = 1/e (isolated acyclic branched polymer,

tree);
(5) cm = (m + 1)m−1, m > 1, for which θ0 = 1/e (set of acyclic branched

polymers, forest);
(6) cm = mm, m > 1, for which θ0 = 1/e (set of cyclic branched polymers);
(7) cm = 1, for m even, 0 otherwise, and Z(θ) = cosh θ, θ0 =∞ (even);
(8) cm = 1, for m odd, 0 otherwise, and Z(θ) = 1 + sinh θ, θ0 =∞ (odd);
(9) cm = 0, for m = 1 and m > 3, c2 = 1, and Z(θ) = 1 + θ2/2, θ0 = ∞

(binary);
(10) cm = 0, for m > 2, c1 = 1, and Z(θ) = 1 + θ, θ0 =∞.

2.2. EGF arising from branched polymers

Let us now identify some fundamental EGF arising in the statistical physics’
modeling of branched polymers. Polymers are macromolecules that can be seen as a
collection of basic units called monomers. Each monomer has two distinct ends. At
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one end (the source end), we have a certain amount of host sites, each of which serving
as a potential host for other monomers. At the other end (the sink end), we have a
single connection site which allows each monomer to (eventually) connect to any host
site of another monomer. Such generated structures for polymers can therefore be
identified with functional graphs or directed graphs with nodes and directed edges.
The output degree at each node, that is the number of edges pointing outwards a node,
cannot exceed one [3,9,10].

The nodes of these functional graphs will be identified with each monomer and
the arrow on each edge points towards some host monomer. A monomer with a free
connection site is called a root. A monomer with a free source end is called a leaf.
We shall call a d-monomer or d-node, a monomer whose host capacity at the source
end is d. A cycle is a monomers’ structure that loops, a tree, or branched polymer,
is a connected acyclic graph, a cycle tree a set of rooted labelled trees arranged in a
cycle, a forest a set of trees...

Let us now translate such structures in the language of EGF.

Definition 4. Let T (θ)
def
= T (θ)− 1 be the (unique) solution of the functional equation

T (θ) = θeT (θ). Then T (θ) is an EGF with dominant singularity at θ0 = 1/e. We shall
call it the tree-EGF because cm = mm−1, m > 1, counts the number of rooted trees
with m labelled monomers (nodes) [5].

This result dates back to A. Cayley [2]. An unordered rooted labelled tree
(or non plane tree) is thus recursively defined by appending a monomer to a set of
similar subtrees (example 3 (4)). Note that for such trees, there is no order distinction
between the subtrees dangling from the common root. Ordered trees, or plane trees,
could be obtained in a similar way, when considering the modified functional equation
T (θ) = θ/(1−T (θ)), for which there m! ways to arrange m subtrees, taking “chirality”
into account.

Definition 5. Let C(θ)
def
= C(θ)− 1 = − log(1− θ), with dominant singularity θ0 = 1.

Then cm = (m − 1)!, m > 1, counts the number of cyclic permutations, i.e., the
number of ways one can assemble m labelled monomers on a cycle. We shall call it
the cycle-EGF (example 3 (2)).

Definition 6. We shall call E(θ) = eθ the set-EGF (example 3 (1)).

Considering now the composition of such simple EGF’s can account for quite
deep combinatorial results in a straightforward way. To illustrate this idea, let us
consider the interplay of the three EGF introduced above.

Considering a set of cycles amounts to work with the EGF E(C(θ)) = 1/(1− θ),
whose Taylor coefficients are cm = m!, m > 1, counting the number of ways that m
labelled monomers can present themselves as a collection (set) of cycles, as required
(the number of permutations of m objects, see, e.g., example 3 (3)).
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Rooting trees on a single cycle amounts to consider the EGF 1+ C(T (θ)), whose
Taylor coefficients grow like cm ∼

√
πm/2mm−1, for large m. We shall call it the

cycle-trees-EGF. A cycle of trees is therefore a labelled cycle with rooted labelled trees
eventually connected to each vertex of the cycle.

Considering a set of cycle-trees requires to consider the mapping-EGF E(C(T (θ)))
= 1/(1 − T (θ)), whose Taylor coefficients are cm = mm, m > 1, which counts the
number of mappings from a set of cardinal m onto itself (example 3 (6)).

Considering a set of trees (a forest) amounts to consider the forest-EGF E(T (θ)),
omitting the cycle-EGF, whose Taylor coefficients are cm = (m + 1)m−1 ∼ emm−1,
as m→∞ (example 3 (5)).

These are the three fundamental EGF we shall play with. In fact, subconfigu-
rations will be our main concern here which requires to introduce constraints in the
enumeration problems alluded to previously. There are many ways to consider such
constraints.

2.3. Restricted EGF of subconfigurations

One way to proceed is to let

g1(θ)
def
= 1 +

∑
m>1

ε1
m

m!
θm,

with ε1
m ∈ {0, 1}, m > 1, any deterministic {0, 1}-valued infinite sequence. Such an

EGF may then be called a subexponential [1].
Considering the solution to the functional equation t1(θ) = θg1(t1(θ)), amounts to

count trees of labelled monomers when the number of incoming branchesm (monomers
with degree m) is forbidden as a result of ε1

m = 0, allowed otherwise. For example,
“linear” trees are readily obtained from g1(θ) = 1+ θ (example 3 (10)), binary trees
from g1(θ) = 1+ θ2/2!, i.e., example 3 (9), even trees (that is with an even number of
incoming branches) from g1(θ) = cosh θ (example 3 (7)) and odd trees from g1(θ) =
1 + sinh θ (example 3 (8)). We shall call g1(θ) the branch-EGF.

In the same way, cycle lengths may be forbidden in the subconfigurations under
concern, which is equivalent to consider the restricted cycle-EGF

c2(θ)
def
=
∑
m>1

ε2
m

m
θm,

with ε2
m ∈ {0, 1}, m > 1, any other deterministic {0, 1}-valued infinite sequence.

Moreover, one may wish to forbid configurations with a certain amount of con-
nected components; this can be done by considering the restricted set-EGF

e3(θ)
def
=
∑
m>1

ε3
m

m!
θm,

with ε3
m ∈ {0, 1}, m > 1, any third deterministic {0, 1}-valued infinite sequence.
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Combining these three restricted EGF again leads to an infinite number of com-
binatorial problems, as a result of particular choices of the three {0, 1}-valued infinite
sequences.

2.4. Randomizing the subconfigurations

There is therefore a great variety of problems which can be dealt with when spec-
ifying the combinatorial constraints just mentioned, and which each strongly depend
on the particular “chemistry” under study. We would like to design a model which
avoids entering into too many details but which presents some illustrative “genericity”.
Particularization is then left to the interested reader. In order to inherit from the main
statistical features of these constrained problems, and avoiding too much specification,
we shall then treat the following three-parameters average model.

Suppose the three {0, 1}-valued infinite sequences defined above are now random,
in the sense that (εim)m>1, i = 1, 2, 3, is an array of independent random variables.
Suppose moreover that the probability that (εim)m>1, i = 1, 2, 3, takes value one is
given by P (εim = 1) = pmi , with pi ∈ (0, 1], i = 1, 2, 3.

It is then assumed that the probability that a degree m-node occurs on a tree, in
any configuration, decreases exponentially withm, according to pm1 , due to the induced
obstructions. Also, the probability that a cycle of length m (resp. a configuration with
m connected components) presents itself, decreases exponentially with m, like pm2
(resp. pm3 ).

We shall then rather work with the average branch-EGF (branch-AEGF)

g(θ)
def
= Eg1(θ) = ep1θ,

where symbol E stands for mathematical expectation with respect to probability P
just defined. The resulting average tree-EGF (tree-AEGF), solution to the functional
equation

t(θ) = θg
(
t(θ)
)

for this particular g, will then prove worth being considered. In a similar way, we
shall need to introduce the average cycle-EGF (cycle-AEGF)

c(θ)
def
= Ec2(θ) = − log(1− p2θ)

and the average set-EGF (set-AEGF)

e(θ)
def
= Ee3(θ) = ep3θ

and the various combinations of these three AEGF, obtained by composition.

Remark 1. It should be noted that such AEGF are not stricto sensu EGF, as defined in
subsection 2.1, definition 1. They belong in fact to a larger class of EGF (with very
similar properties) for which condition (iii) in definition 2.1 should be relaxed to
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(iii)′ The sequence (cm)m>1 has state-space R+, the set of non-negative real
numbers.

Apart from this extension, the algebra of AEGF appears quite similar to the one
of ordinary EGF.

For example, if one is interested in the average number of overall possible con-
figurations, given m monomers, requires the computation of m![θm]Z(θ), with

Z(θ)
def
= e

(
c
(
t(θ)
))

=
1(

1− p2t(θ)
)p3

.

Here [θm]Z(θ)
def
= cm/m! denotes, as usual, the coefficient of θm in the θ-expansion

of Z(θ).
We shall see below how to extract the asymptotic, that is for large m, equivalent

of such coefficient, using singularity analysis developed by [7].
Finally, we are left with the asymptotic study of a statistical three-parameter

model of branched polymers whose physical signification is now clear.

3. Singularity analysis

As was noted just before, it would be helpful to extract directly the asymptotic
form of coefficients of a complicated AEGF, such as Z(θ). Fortunately, these methods
exist, and we shall now briefly indicate how they particularize to our situation.

We first recall a partial result of [7].

Singularity analysis result

Let Z(θ) be any analytic function in the indented domain defined by

D =
{
θ: |θ| 6 θ0, |Arg(θ − θ0)| > π/2− η

}
,

where θ, θ0 > θ, and η are positive real numbers. Assume that, with σ(x) = xα logβ x,
α /∈ {0,−1,−2, ...} and β any real number we have

Z(θ) ∼ σ
(

1
1− θ/θ0

)
as θ → θ0 in D.

Then, the Taylor coefficients of Z(θ) satisfy

[θm]Z(θ) ∼ θ−m0
σ(m)
mΓ(α)

as m→∞,

where Γ(α) is the Euler function.
The main source of singularity in our problem stems from the tree-AEGF. The

type of singularity is algebraic with parameter α = −1/2 (branch point) [12], as a
result of the implicit function theorem [5].
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Singularity of the tree-AEGF

The tree AEGF function, t(θ), defined above is analytic in the domain D formed

by the complex plane slit along (θ0
def
= 1/ep1,∞). For θ tending to 1/ep1 in D, t(θ)

admits the singular expansion

t(θ) ∼ 1
p1
−
√

2
p1

(
1

1− θ/θ0

)−1/2

.

It results that

[θm]t(θ) ∼ 1
p1
−
√

2
p1
θ−m0

m−1/2

mΓ(−1/2)
as m→∞,

and that m![θm]t(θ) ∼ (p1m)m−1 (from the Stirling formula) as soon as p1 > 1/e,
whereas m![θm]t(θ) ∼ 1/p1 otherwise.

Singularity of the overall AEGF Z(θ)

Recall

Z(θ) =
1(

1− p2t(θ)
)p3

.

The question is then to understand how the dominant singularity of t(θ) “snowballs”
into such a compound AEGF, for which there are two competing singularities depend-
ing on the value of the parameter p2/p1. Three cases then may arise.

• p2/p1 < 1 (subcritical):

Z(θ) ∼ (1− p2/p1)−p3

(
1−
√

2p2p3

p1 − p2

( 1
1− θ/θ0

)−1/2
)
.

• p2/p1 = 1 (critical):

Z(θ) ∼
(

1
2(1− θ/θ0)

)p3/2

.

• p2/p1 > 1 (supercritical): in this case the singularity is no longer at θ0, but at
θ2 < θ0 defined by 1 = p2t(θ2), hence θ2 = 1

p2
e−p1/p2 . It follows that

Z(θ) ∼
(

1− p1/p2

1− θ/θ2

)p3

,

around θ2.

In each case, the asymptotics on the Taylor coefficients follow easily from the
singularity analysis result.
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• Subcritical case:

[θm]Z(θ) ∼ (1− p2/p1)−p3
p2p3

p1 − p2
θ−m0

1

m3/2
√

2π
as m→∞,

provided p1 > 1/e, ∼ (1− p2/p1)−p3 otherwise.

• Critical case:

[θm]Z(θ) ∼ 1

2p3/2
θ−m0

mp3/2

mΓ(p3/2)
as m→∞,

provided p1 > 1/e.

• Supercritical case:

[θm]Z(θ) ∼ (1− p1/p2)p3θ−m2
m
p3

mΓ(p3)
as m→∞,

provided θ2 < 1.

It should be noted here that such a distinction between critical regimes exclusively
originates from the cycle-AEGF. No such critical behavior would take place if one

considers the forest-AEGF f (θ)
def
= ep3t(θ), omitting cycling! Cycling is therefore a

very essential feature for the asymptotic behavior of [θm]Z(θ), since three distinct
behaviors are then observed.

4. Structural parameters

4.1. “Marking” additive parameters of interest

So far, we have been mainly concerned by “counting” the average number of
available configurations.

It is also of importance to derive the distribution of several structural parameters
in the study of such average configurations such as the number of d-nodes on a tree,
the number of nodes on a tree, the number of trees with d monomers, the number of
trees, the number of cycles with d monomers, the number of cycles, the number of
connected components with d monomers, the number of connected components...

All these can easily be obtained by considering the bivariate AEGF

Z(γ, θ) = 1 +
∑
m>1

θm
(∑
p>1

cp,m

m!
γp
)

,

with a new variable γ ∈ [0, 1] marking the parameter under study [10]. Here cp,m

is the number of configurations with m monomers whose parameter of interest takes
value p. These global bivariate Z(γ, θ) can be obtained when inserting local marked
AEGF into Z(θ). Here are a few examples of this mechanism.
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1. gd(γ, θ)
def
= g(θ) + (γ − 1)([θd]g(θ))θd is the branch-AEGF of a tree that will

serve marking d-nodes (d > 0), including leaves for which d = 0.
2. γg(θ) is the branch-AEGF of the tree-AEGF marking all nodes of a tree.
3. t(θ) + (γ−1)([θd]t(θ))θd is the AEGF of the number of trees with d monomers.
4. γt(θ) is the local AEGF used for the number of trees’ information.
5. c(θ) + (γ − 1)([θd]c(θ))θd is the AEGF of the number of cycles with d

monomers.
6. γc(θ) is the AEGF that yields the number of cycles.
7. c(t(θ)) + (γ − 1)([θd]c(t(θ)))θd is the AEGF of the number of cycle-trees

(connected components) with d monomers.
Inserting these marked AEGF into Z(θ) yield bivariate Z(γ, θ) coding for joint

parameter and configuration number values. For example, if one wishes to study
the average number of connected components, (example 6), one has to consider the
bivariate AEGF

Z1(γ, θ) = e
(
γc
(
t(θ)
))

= e
p3γ log 1

1−p2t(θ) .

If one is interested in the average number of trees (example 4), one should focus
on the bivariate AEGF

Z2(γ, θ) = e
p3 log 1

1−p2γt(θ) .

If the number of d-monomers in a set of branched or cycle polymers is relevant,
one has to study

e
(
c
(
td(γ, θ)

))
= e

p3 log 1
1−p2td(γ,θ) ,

with td(γ, θ)
def
= θgd(td(γ, θ)), as a result of example 1.

Observe that Z(1, θ) = Z(θ) is the “counting” marginal, for all these examples;
in other words cm =

∑
p>1 cp,m is the number of configurations sequence.

Multivariate information is also obviously available (when one focuses on more
than one parameter at the same time: variables γ1, γ2, ...).

Two other bivariate AEGF will also be introduced now (without justification).
They are:

8. tc(γ, θ) = θg(tc(γ, γθ)) marking the cumulative “distance” (e.g., the number
of monomers) from each node of a tree to its root.

9. t(γ, θ) = θg(γt(γ, θ)) marking the sum of degrees parameter over every node
of a tree. This parameter is important because it measures the connectivity of these
structures, with a competition between leaves (dangling nodes of degree zero at the
boundary of the tree) and the other nodes with positive output degree, nested “inside”
the tree.

There associate bivariate AEGF, for a set of polymers, are respectively

e
(
c
(
t(γ, θ)

))
= e

p3 log 1
1−p2tc(γ,θ) and Z3(γ, θ) = e

p3 log 1
1−p2t(γ,θ) .
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4.2. Averaging over the available configurations

Let

Z(γ, θ) = 1 +
∑
m>1

θm
(∑
p>1

cp,m

m!
γp
)

be any of the bivariate AEGF introduced before.
There are two different levels at which one can consider the averaging problem

over the configurations.

4.2.1. The thermodynamic limit m→∞
The first level proceeds as follows: suppose one is able to extract [θm]Z(γ, θ),

or possibly its asymptotic equivalent, for large m.
Then,

Φm(γ)
def
=

1
[θm]Z(θ)

[θm]Z(γ, θ) =
∑
p>1

cp,m

cm
γp

is the probability generating function (PGF) of the variable which has been marked by
γ, as a function of the number m of monomers.

In particular,

Φ(p)
m (1)

def
=

1
[θm]Z(θ)

[θm]Z(p)(1, θ)

with

Z (p)(1, θ)
def
=

∂p

∂γp
Z(γ, θ) |γ=1

can be extracted if the moments of the distribution are helpful (p = 1 giving the
mean...).

Depending on the three internal control parameters (p1, p2, p3), however, Φm(γ)
may converge or diverge, in the thermodynamic limit m→ ∞, as we shall now see.
This happens if the parameter of interest is the number of connected components. This
is the signature of a phase transition, known as percolation. The point separating these
two behaviors will be called critical, as usual. At critical point it is of interest to study
the fluctuations of the parameter versus its mean value, since these are expected to be
comparatively large.

Number of connected components; the percolation result (gel–sol transition). We
shall study now in some detail the behavior of the PGF, associated to Z1(γ, θ), that is

Φ1,m(γ)
def
=

1
[θm]Z(θ)

[θm]Z1(γ, θ),

which focuses on the asymptotic number of connected components. We have the
percolation result which follows directly from the asymptotic analysis on Z(θ) =
Z1(1, θ).
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• In the subcritical case, p2/p1 < 1, two cases arise.

If θ0 < 1 (or p1 > 1/e), then Φ1,m(γ) ∼ γe−λ(1−γ) as m→∞.
If θ0 > 1 (or p1 6 1/e), then Φ1,m(γ) ∼ e−λ(1−γ) as m→∞.

• Therefore, Φ1,m(γ) converges in this case to a Poisson distribution with intensity
given by λ = p3 log 1/(1 − p2/p1) > 0, independent of m.
We then have a “gel”, for which the average number of connected components is
finite in the thermodynamic limit m→∞, possibly equal to one on some surface
in the internal parameter space defined by λ = 1.

• In the critical case, p2/p1 = 1,

Φ1,m(γ) ∼ e−(1−γ)p3/2 log(m/2) Γ(p3/2)
Γ(γp3/2)

as m→∞.

Therefore, Φ1,m(γ) converges in this case to a Poisson distribution with intensity
given by λm = (p3/2) log(m/2), providing the divergent (logarithmic) mean and
variance of the asymptotic distribution for the number of connected components.
Alternatively Φ1/λm

1,m (γ) ∼ e−(1−γ) as m→∞ (Poisson with intensity 1).

• In the supercritical case, p2/p1 > 1,

Φ1,m(γ) ∼ (1− p1/p2)(γ−1)p3
Γ(p3)m

(γ−1)p3

Γ(γp3)
as m→∞.

Alternatively Φ1/λm
1,m (γ) ∼ e−(1−γ) as m → ∞ (Poisson with intensity 1), with

λm = p3 log((1− p1/p2)m).
We then have a “sol”.

Number of trees. As was already underlined, this parameter is encoded in the PGF
related to

Z2(γ, θ) = e
p3 log 1

1−p2γt(θ) ,

that is

Φ2,m(γ)
def
=

1
[θm]Z(θ)

[θm]Z2(γ, θ).

Proceeding in the same way, one can show the following result.

• In the subcritical case, p2/p1 < 1, two cases arise.
If θ0 < 1 (or p1 > 1/e), then

Φ2,m(γ) ∼ γ
(

1− p2/p1

1− γp2/p1

)p3+1

as m→∞, for γ 6 p1/p2.

If θ0 > 1 (or p1 6 1/e), then

Φ2,m(γ) ∼
(

1− p2/p1

1− γp2/p1

)p3

as m→∞.
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Therefore, Φ2,m(γ) converges in this case to a negative binomial distribution.

• In the critical case, p2/p1 = 1,

Φ2,m(γ) ∼
∑
p>0

Cp
p!

(√
m/2(γ − 1)

)p
as m→∞,

with

Cp =
Γ(p3/2)Γ(p3 + p)

Γ(p3)Γ((p3 + p)/2)
.

Therefore the mean number of trees grows like C1
√
m/2, whereas the variance

grows like (C2 − C2
1 )m/2 (there are very large fluctuations here at critical point

since the standard deviation and the mean are of the same order of magnitude).

• In the supercritical case, p2/p1 > 1,

Φ2,m(γ) ∼
(
γp2 − p1

γp2 − γp1

)p3(
γe

p1
γp2
− p1
p2

)m
as m→∞, for γ > p1/p2.

Therefore, the mean grows like (1−p1/p2)m+p1p3/(p2 − p1), whereas the variance
is asymptotically equivalent to (p1/p2)m− p1p2p3/(p2 − p1)2.

Sum of degrees parameter (connectivity). Concerning this parameter, one needs to
study the PGF, associated to

Z3(γ, θ) = e
p3 log 1

1−p2t(γ,θ) ,

with t(γ, θ) = θep1γt(γ,θ) that is

Φ3,m(γ)
def
=

1
[θm]Z(θ)

[θm]Z3(γ, θ).

Proceeding in the same way, one can prove the following results.

• In the subcritical case, p2/p1 < 1, if θ0 < 1,

Φ3,m(γ) ∼
(

1− p2/p1

1− p2/γp1

)p3+1

γm−1 as m→∞,

provided γ > p2/p1.

Therefore, Φ1/m
3,m (γ) ∼ γ as m→∞. The mean connectivity grows like m.

• In the critical case, p2/p1 = 1, the mean connectivity grows like m/e, and the stan-

dard deviation like
√

3
2 m/e (large fluctuations at critical point), with no dependence

on p3.

• In the supercritical case, p2/p1 > 1 and

Φ3,m(γ) ∼
(

1− γp1/p2

1− p1/p2

)p3

e−mp1/p2(1−γ).
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Alternatively, Φ1/m
3,m (γ) is the PGF of a Poisson variable of intensity p1/p2.

As far as the mean is concerned, this parameter therefore is quite “blind” to
the phase transition which occurred for example on the connected components, or
number of trees parameters. This is because, at the level of a single tree, the average
connectivity can easily be shown to converge to one; there is an exact statistical balance
between the (degree-zero) leaves at the boundary of the tree and the nodes in the bulk
of the tree.

4.2.2. Randomizing the number of monomers
The other averaging level proceeds as follows: let the conditional configuration

number cp/m be defined by cp/m
def
= cp,m/cm.

Then

Z(γ, θ) = 1 +
∑
m>1

θmcm
m!

(∑
p>1

cp/mγ
p

)
.

Suppose the exact number of constitutive monomers is now unknown; it is then a
classical model in statistical physics to assume that the probability to have m monomers
at “fugacity” θ is

pθ(m) =
1

Z(1, θ)
θmcm
m!

.

The probability to have m monomers is therefore proportional to the number
of configurations cm, as required. Therefore the quantity of interest will now be the

γ-probability generating function (PGF) Zθ(γ)
def
= Z(γ, θ)/Z(1, θ), as a function of θ.

This approach sees parameter θ as an external parameter and is a standard way to
proceed in statistical physics. The conclusions appear now quite different, for the
parameters of interest. We illustrate this point of view on the number of components
and number of trees parameters. Similar results can be obtained for other parameters.

Number of connected components. Concerning the PGF related to Z1(γ, θ), i.e.,

Z1,θ(γ)
def
= Z1(γ, θ)/Z1(1, θ),

we have Z1,θ(γ) = e−λ(θ)(1−γ), with λ(θ) = p3 log 1/(1 − p2t(θ)). This variable is
Poisson distributed with intensity λ(θ). The behavior (definiteness) of the normalizing
denominator of Z1(γ, θ), which is Z(θ), is then crucial in this approach and we have
the specific percolation result (gel–sol transition).

• p2/p1 6 1 (subcritical and critical): Z1,θ(γ) is defined for θ < θ0 = 1/(ep1).

• p2/p1 > 1 (supercritical): in this case the θ-singularity is no longer at θ0, but at
θ2 = 1

p2
e−p1/p2 < θ0. It follows that Z1,θ(γ) is defined only for θ < θ2.

Crossing the critical value from below, in this approach, translates into a simple
shift to the left in the external parameter space θ. In both cases, this approach predicts



T. Huillet, B. Jeannet / Branched polymers’ statistics 97

the existence of a critical value θc (which could be either θ0 or θ2). Ordinary statistical
mechanics appears to be undefined for θ > θc. The behavior near θ = θc of the
thermodynamical functions Zθ(γ) is derivable. One may infer from this that θc may
be some kind of limiting fugacity, although it is unclear whether θ > θc may be
reached following a phase transition whose nature still remains mysterious.

Number of trees. The PGF associated to Z2(γ, θ) is

Z2,θ(γ) =

(
1− p2t(θ)

1− γp2t(θ)

)p3

.

This parameter is distributed like a negative binomial, with the same phenomena as
before.

5. Infinite divisibility of (A)EGF and related notions

We would like to end up this monograph by introducing the notion of infinite-
divisibility which we think deserves interest in our context (infinitely divided matter).
This notion and the related one of self-decomposability (resp. stability) derive their
importance from the fact that they are the solution to a central limit problem: the set
of self-decomposable distributions coincides with the set of limit laws of normalized
sums of independent (resp. identically distributed) random variables.

Let us first connect the worlds of (A)EGF to the one of discrete probability. As
was underlined just before, to each (A)EGF it is possible to associate the θ-family of
discrete probability distributions

pθ(m)
def
=

cmθ
m

Z(θ)m!
, m > 0, θ ∈ D+.

This defines the probability that the population is constituted with m monomers, as a
function of external control parameter θ.

If

fθ(u)
def
=
∑
m>0

pθ(m)um

is now the associated PGF of this probability distribution, we have

fθ(u)
def
=
Z(θu)
Z(θ)

for θ ∈ D+, u ∈ [0, 1]. Obviously, fθ(u) is a convex function of u for any θ in its
definition domain.

Example 7. We give here some generating functions (PGF) associated to some simple
EGF of section 2.1. An extension to AEGF is immediate.

(1) fθ(u) = e−θ(1−u) (Poisson);
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(2) fθ(u) = 1−log(1−θu)
1−log(1−θ) (logarithmic);

(3) fθ(u) = 1−θ
1−θu (Pascal);

(10) fθ(u) = 1+θu
1+θ (Bernoulli).

If fθ(u) has been derived in such a way from some Z(θ), we shall say that the
PGF derives from an (A)EGF. Note that this interpretation sheds some new light on
the probabilistic meaning of these very standard distributions.

Let us now introduce the notion of infinite divisibility (ID).

Definition 8. An (A)EGF Z(θ) is said to be infinitely divisible if Z(θ)1/n has non-
negative Taylor coefficients for any n > 0.

It easily follows from the above definition that

Proposition 9. An (A)EGF Z(θ) is infinitely divisible iff l(θ)
def
= 1 + logZ(θ) is itself

an (A)EGF.

This results from the fact that a simple limit of (A)EGF remains an (A)EGF, if
it exists.

Remark 2. The singularities of l(θ) are now to be searched within the (disjoint) union
of the singularities of Z(θ) and zeros of Z(θ) (necessarily in the complex non-positive
half plane). As was underlined before, the (A)EGF Z(θ) has a real positive dominant
singularity θ0. If θ1 is now the (complex) dominant zero of Z(θ), we have: the
dominant singularity of l(θ) is θ1 if |θ1| < θ0, θ0 otherwise.

This yields a constructive way to decide on infinite divisibility.

Proposition 10. If |θ1| < θ0, Z(θ) is not infinitely divisible.

Example 11. Examples 1–6 of section 2.1 are infinitely divisible EGF, whereas ex-
amples 7–10 are not. Concerning the tree-AEGF, t(θ), θ0 = 1/ep1 and θ1 = −ep1 . It
follows that t(θ) is not ID if p1 < p∗1, with 1/ep∗1 = ep

∗
1 . Of course the overall AEGF

Z(θ) =
1(

1− p2t(θ)
)p3

is ID, by construction.

Let us now have a look to the probabilistic version of the infinite divisibility

notion introduced above on (A)EGF. Let l(θ)
def
= logZ(θ), so that Z(θ) = el(θ). The

associated generating function is therefore
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fθ(u)
def
=
Z(θu)
Z(θ)

= el(θ)(Lθ(u)−1)

with Lθ(u)
def
= l(θu)/l(θ). It is the one of a compound Poisson variable with intensity

l(θ), whose generating function in the jump (mark) space is Lθ(u), with Lθ(0) = 0.
Observe that Lθ(u) is a generating function of an atomic probability at the only condi-
tion that l(θ) has non-negative Taylor coefficients which means that Z(θ) is infinitely
divisible, as required.

Infinite divisibility of (A)EGF matches therefore with the standard definition of
infinite divisibility of probability generating functions (the ones of compound Poisson
variables) [6].

The PGF of an ID distribution admits also the following useful representation,
adapting a result of [13],

fθ(u) = e
∫ u

1
Rθ(v) dv

.

Here, Rθ(u)
def
= l(θ)L

′
θ(u), u ∈ [0, 1], is called the θ-canonical measure (with

“prime” indicating partial derivation of Lθ(u) with respect to u). We shall let

Rθ(u)
def
=
∑
n>0

rθ(n)un, rθ(n) > 0,

define the power series expansion of Rθ(u).
This representation will prove helpful to distinguish between subclasses of ID

distributions. Among these, discrete self-decomposable (A)EGF play a remarkable
role. Discrete self-decomposability should not be confused with its standard continuous
counterpart [11].

Definition 12. An (A)EGF Z(θ) is self-decomposable if ∀θ, θ
′ ∈ D+, θ

′ 6 θ, ∀p ∈
(0, 1), there is an (A)EGF Zp(θ) such that

Z(θ
′
)Zp(θ) = Z

(
(1− p)θ + pθ

′)
Zp(θ

′
).

Changing indeed θ
′

= θu, u ∈ [0, 1], in the above equation characterizing self-
decomposability for (A)EGF, yields the following definition.

Definition 13. fθ(u) is self-decomposable if ∀p ∈ (0, 1), there is a (probability) gen-
erating function fp,θ(u) such that fθ(u) = fθ(1− p(1− u))fp,θ(u).

This is the standard (discrete) version of self-decomposability of probability dis-
tributions on the integers. We then have the characterization property
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Proposition 14. An (A)EGF Z(θ) is self-decomposable iff

hθ(u)
def
= 1− (1− u)

L
′
θ(u)

L
′
θ(0)

defines a u-PGF such that hθ(0) = 0. As a consequence

fθ(u)
def
=
Z(θu)
Z(θ)

= e
∫ u

1
Rθ(v) dv

with canonical measure

Rθ(u) = l(θ)L
′
θ(0)

1− hθ(u)
1− u .

In an equivalent manner, this means that the Taylor coefficients of Rθ(u),
(rθ(n))n>1, is a non-increasing sequence of n. As a result, the associated pθ(n),
n > 0, is unimodal, with mode at the origin iff rθ(0) = pθ(1)/pθ(0) 6 1 [13]. The self-
decomposable subclass of ID distributions therefore focuses on unimodal distributions,
with mode possibly at the origin.

Example 15. 1. Let Z(θ) = 1/(1 − θ), θ 6 1, (example 3 (3)) which is ID. Then

fθ(u) =
1− θ

1− θu = elog 1
(1−θ) ( log(1−θu)

log(1−θ) −1),

identifying l(θ) and Lθ(u). It follows that

hθ(u)
def
= 1− (1− u)

L
′
θ(u)

L
′
θ(0)

=
(1− θ)u
1− θu ,

which is a PGF. Z(θ) therefore is self-decomposable and fθ(u) is the PGF of a unimodal
distribution. Moreover, Rθ(u) = θ/(1− θu) and rθ(0) = θ 6 1 in the whole parameter
range. Mode is always at the origin for any admissible value of the parameter.

2. Let Z(θ) = eθ , θ > 0, (example 3 (1)), which clearly is ID, and for which
fθ(u) = eθ(u−1) (Poisson) so that l(θ) = θ and Lθ(u) = u, independent of θ. It follows
that hθ(u) = u (Z(θ) is self-decomposable) and that Rθ(u) = θ. Thus mode is at the
origin iff rθ(0) = θ 6 1, otherwise at [θ] (integer part of θ), as is well-known.

Actually, Poisson distributions belong to a remarkable subclass of self-decom-
posable distributions, namely the discrete α-stable distributions whose generating func-
tion is defined as follows.

Definition 16. fθ(u) is α-stable, α ∈ (0, 1], if ∀p ∈ (0, 1), it satisfies the functional
equation

fθ(u) = fθ
(
1− p1/α(1− u)

)
fθ
(
1− (1− p)1/α(1− u)

)
,

whose solution is fθ(u) = e−λ(θ)(1−u)α , λ(θ) > 0, including Poisson (α = 1).
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